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Thermal barrier coatings (TBC's) for turbine airfoils in high-performance

engines represent an advanced materials technology with both performance and

durability benefits. The foremost TBC benefit is the reduction of heat transferred

into air-cooled components, which yields performance and durability benefits (fig.

I). To achieve these benefits, however, the TBC system must be reliable.

Mechanistic thermomechanical and thermochemical life models are therefore required

for the reliable exploitation of TBC benefits on gas turbine airfoils. Garrett's

NASA HOST Program (NAS3-23945) goal is to fulfill these requirements.

This program focuses on predictingthe lives of two types of strain-tolerant and

oxidation-resistant TBC systems that are produced by conmnercial coating suppliers to

the gas turbine industry (fig. 2). The plasma-sprayed TBC system, composed of a low

pressure plasma sprayed (LPPS) applied oxidation resistant NiCrAIY bond coating and

an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative

layer, is applied by both Chromalloy (Orangeburg, New York) and Klock (Manchester,

Connecticut). The second type of TBC is applied by the electron beam-physical vapor

deposition (EB-PVD) process by Temescal (Berkeley, California).

A viable model must predict TBC life on a turbine airfoil as a function of

engine, mission, and materials system parameters. These parameters are incorporated

into mechanical, oxidation, and salt deposition functions of TBC degradation as

indicated in figure 3. The approach adopted in this program for developing a TBC

life model is similar to that in use at Garrett for prediction of oxidation/hot

corrosion lives of metallic coatings as a function of engine, mission, and materials

system parameters (fig. 4). Similarities and differences in these models are

illustrated in figure 5.

A rapid computational capability is required for preliminary design and mission

analyses of TBC lives. Substructure models are being developed to facilitate the

rapid computation of TBC life as indicated in figure 6. TBC life analysis will be

performed for each of the critical damage modes.

Burner rig and mechanical property data are being obtained to quantify the

capabilities of each of the TBC systems for each critical mode of degradation.

B_,rner rig test data and zirconia fracture toughness data are illustrated on figures
7 and 8.

Lives of these TBC systems will be predicted for TFE731 high pressure turbine

blades for factory engine test, business aircraft and maritime surveillance

missions. Complementary engine validation tests are planned.

This program is now at the midpoint of Phase I. The program schedule is

provided in figure 9.
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Figure 2. Life Prediction Models are Being Developed for

Plasma-Sprayed and EB-PVD TBC Systems.
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Figure 4. Turbine Airfoil Coating Life Predicted by Computer

Model.
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Figure 6. Substructure Models Facilitate the Rapid

Computation of TBC Life Required for

Preliminary Design and Mission Analysis.
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Figure 9. TBC Life Prediction Schedule.
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